| Paper GEO2(Math) End Sem 1. Answer the following question (i) Define rational function. (ii) Write the formula for integration (iv) Define odd and even function. (iv) What is the symmetry of the construction constructi | urve when there is even pow
nmetry if Θ is replaced with –
on so that a vector has constan | O dillo i o i | 1X10=10 1X1 | |--|---|-------------------|--| | S. Prove that $\vec{\nabla} \cdot \vec{r} = 3$. where $\vec{r} = 3$. | xi + yj + zk | | | | | Group -B | | - | | | Answer any fou | ŗ | | | (a) Evaluate $\int \frac{dx}{\sin x + \sin 2x}$ (b) Evaluate $\int \frac{dx}{(2+x)\sqrt{1+x}}$ 5. (a) Evaluate $\int_0^{\pi/2} \log \sin x dx$ (b) Find reduction formula for $\int_0^{\pi/2} \log x dx$ | $\frac{1}{2}sin^n x dx$ | | 10
10
10
20
10 | | (a) Find area and perimeter of ci (b) Find volume and surface are | rcle x²+y²=a².
ea of sphere. | | 10 8 76
10 | | velocity and acceleration at t=1. (b) Prove that $\vec{\nabla} \times \vec{r} = 0$ 8. (a) A particle moves so that its p $\vec{r} \times \frac{d\vec{r}}{dt}$ is constant vector (b) Prove that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$ 9. (a) If $r = \vec{r} $ where $\vec{r} = x\vec{i} + \vec{r}$. (b) If $f(x,y,z)=3x^2y-y^3z^2$, Find $\vec{\nabla} \cdot \vec{r}$. | osition vector is given by \vec{r} = | coswti+sinwtj who | 10 |